Analog-to-digital converter

An analog-to-digital converter (abbreviated ADC, A/D or A to D) is a device that converts a continuous quantity to a discrete time digital representation. An ADC may also provide an isolated measurement. The reverse operation is performed by a digital-to-analog converter (DAC).

Typically, an ADC is an electronic device that converts an input analog voltage or current to a digital number proportional to the magnitude of the voltage or current. However, some non-electronic or only partially electronic devices, such as rotary encoders, can also be considered ADCs.

The digital output may use different coding schemes. Typically the digital output will be a two's complement binary number that is proportional to the input, but there are other possibilities. An encoder, for example, might output a Gray code.

Contents

[hide]

Concepts

Resolution

The resolution of the converter indicates the number of discrete values it can produce over the range of analog values. The values are usually stored electronically in binary form, so the resolution is usually expressed in bits. In consequence, the number of discrete values available, or "levels", is a power of two. For example, an ADC with a resolution of 8 bits can encode an analog input to one in 256 different levels, since 28 = 256. The values can represent the ranges from 0 to 255 (i.e. unsigned integer) or from −128 to 127 (i.e. signed integer), depending on the application.

Resolution can also be defined electrically, and expressed in volts. The minimum change in voltage required to guarantee a change in the output code level is called the least significant bit (LSB) voltage. The resolution Q of the ADC is equal to the LSB voltage. The voltage resolution of an ADC is equal to its overall voltage measurement range divided by the number of discrete voltage intervals:

Q = \dfrac{E_ \mathrm {FSR}}{N},

where N is the number of voltage intervals and EFSR is the full scale voltage range. EFSR is given by

E_ \mathrm {FSR} = V_ \mathrm {RefHi} - V_ \mathrm {RefLow}, \,

where VRefHi and VRefLow are the upper and lower extremes, respectively, of the voltages that can be coded.

Normally, the number of voltage intervals is given by

N = 2^M, \,

where M is the ADC's resolution in bits.

That is, one voltage interval is assigned per code level.

Example:

In practice, the useful resolution of a converter is limited by the best signal-to-noise ratio (SNR) that can be achieved for a digitized signal. An ADC can resolve a signal to only a certain number of bits of resolution, called the effective number of bits (ENOB). One effective bit of resolution changes the signal-to-noise ratio of the digitized signal by 6 dB, if the resolution is limited by the ADC. If a preamplifier has been used prior to A/D conversion, the noise introduced by the amplifier can be an important contributing factor towards the overall SNR.

Response type

Most ADCs are linear types. The term linear implies that the range of input values has a linear relationship with the output value.

Some early converters had a logarithmic response to directly implement A-law or μ-law coding. These encodings are now achieved by using a higher-resolution linear ADC (e.g. 12 or 16 bits) and mapping its output to the 8-bit coded values.

Accuracy

An ADC has several sources of errors. Quantization error and (assuming the ADC is intended to be linear) non-linearity are intrinsic to any analog-to-digital conversion. There is also a so-called aperture error which is due to a clock jitter and is revealed when digitizing a time-variant signal (not a constant value).

These errors are measured in a unit called the least significant bit (LSB). In the above example of an eight-bit ADC, an error of one LSB is 1/256 of the full signal range, or about 0.4%.

Quantization error

Quantization error (or quantization noise) is the difference between the original signal and the digitized signal. Hence, The magnitude of the quantization error at the sampling instant is between zero and half of one LSB. Quantization error is due to the finite resolution of the digital representation of the signal, and is an unavoidable imperfection in all types of ADCs.

Non-linearity

All ADCs suffer from non-linearity errors caused by their physical imperfections, causing their output to deviate from a linear function (or some other function, in the case of a deliberately non-linear ADC) of their input. These errors can sometimes be mitigated by calibration, or prevented by testing.

Important parameters for linearity are integral non-linearity (INL) and differential non-linearity (DNL). These non-linearities reduce the dynamic range of the signals that can be digitized by the ADC, also reducing the effective resolution of the ADC.

Aperture error

Imagine digitizing a sine wave x(t)=A \sin{(2 \pi f_0 t)}. Provided that the actual sampling time uncertainty due to the clock jitter is \Delta t, the error caused by this phenomenon can be estimated as E_{ap} \le |x'(t) \Delta t| \le 2A \pi f_0 \Delta t.

The error is zero for DC, small at low frequencies, but significant when high frequencies have high amplitudes. This effect can be ignored if it is drowned out by the quantizing error. Jitter requirements can be calculated using the following formula: \Delta t < \frac{1}{2^q \pi f_0}, where q is the number of ADC bits.

Output size
(bits)
Input frequency
1 Hz 44.1 kHz 192 kHz 1 MHz 10 MHz 100 MHz 1 GHz
8 1,243 µs 28.2 ns 6.48 ns 1.24 ns 124 ps 12.4 ps 1.24 ps
10 311 µs 7.05 ns 1.62 ns 311 ps 31.1 ps 3.11 ps 0.31 ps
12 77.7 µs 1.76 ns 405 ps 77.7 ps 7.77 ps 0.78 ps 0.08 ps
14 19.4 µs 441 ps 101 ps 19.4 ps 1.94 ps 0.19 ps 0.02 ps
16 4.86 µs 110 ps 25.3 ps 4.86 ps 0.49 ps 0.05 ps
18 1.21 µs 27.5 ps 6.32 ps 1.21 ps 0.12 ps
20 304 ns 6.88 ps 1.58 ps 0.16 ps
24 19.0 ns 0.43 ps 0.10 ps
32 74.1 ps

This table shows, for example, that it is not worth using a precise 24-bit ADC for sound recording if there is not an ultra low jitter clock. One should consider taking this phenomenon into account before choosing an ADC.

Clock jitter is caused by phase noise.[1][2] The resolution of ADCs with a digitization bandwidth between 1 MHz and 1 GHz is limited by jitter.[3]

When sampling audio signals at 44.1 kHz, the anti-aliasing filter should have eliminated all frequencies above 22 kHz. The input frequency (in this case, 22 kHz), not the ADC clock frequency, is the determining factor with respect to jitter performance.[4]

Sampling rate

The analog signal is continuous in time and it is necessary to convert this to a flow of digital values. It is therefore required to define the rate at which new digital values are sampled from the analog signal. The rate of new values is called the sampling rate or sampling frequency of the converter.

A continuously varying bandlimited signal can be sampled (that is, the signal values at intervals of time T, the sampling time, are measured and stored) and then the original signal can be exactly reproduced from the discrete-time values by an interpolation formula. The accuracy is limited by quantization error. However, this faithful reproduction is only possible if the sampling rate is higher than twice the highest frequency of the signal. This is essentially what is embodied in the Shannon-Nyquist sampling theorem.

Since a practical ADC cannot make an instantaneous conversion, the input value must necessarily be held constant during the time that the converter performs a conversion (called the conversion time). An input circuit called a sample and hold performs this task—in most cases by using a capacitor to store the analog voltage at the input, and using an electronic switch or gate to disconnect the capacitor from the input. Many ADC integrated circuits include the sample and hold subsystem internally.

Aliasing

All ADCs work by sampling their input at discrete intervals of time. Their output is therefore an incomplete picture of the behaviour of the input. There is no way of knowing, by looking at the output, what the input was doing between one sampling instant and the next. If the input is known to be changing slowly compared to the sampling rate, then it can be assumed that the value of the signal between two sample instants was somewhere between the two sampled values. If, however, the input signal is changing rapidly compared to the sample rate, then this assumption is not valid.

If the digital values produced by the ADC are, at some later stage in the system, converted back to analog values by a digital to analog converter or DAC, it is desirable that the output of the DAC be a faithful representation of the original signal. If the input signal is changing much faster than the sample rate, then this will not be the case, and spurious signals called aliases will be produced at the output of the DAC. The frequency of the aliased signal is the difference between the signal frequency and the sampling rate. For example, a 2 kHz sine wave being sampled at 1.5 kHz would be reconstructed as a 500 Hz sine wave. This problem is called aliasing.

To avoid aliasing, the input to an ADC must be low-pass filtered to remove frequencies above half the sampling rate. This filter is called an anti-aliasing filter, and is essential for a practical ADC system that is applied to analog signals with higher frequency content.

Although aliasing in most systems is unwanted, it should also be noted that it can be exploited to provide simultaneous down-mixing of a band-limited high frequency signal (see undersampling and frequency mixer).

Dither

In A-to-D converters, performance can usually be improved using dither. This is a very small amount of random noise (white noise), which is added to the input before conversion. Its effect is to cause the state of the LSB to randomly oscillate between 0 and 1 in the presence of very low levels of input, rather than sticking at a fixed value. Rather than the signal simply getting cut off altogether at this low level (which is only being quantized to a resolution of 1 bit), it extends the effective range of signals that the A-to-D converter can convert, at the expense of a slight increase in noise - effectively the quantization error is diffused across a series of noise values which is far less objectionable than a hard cutoff. The result is an accurate representation of the signal over time. A suitable filter at the output of the system can thus recover this small signal variation.

An audio signal of very low level (with respect to the bit depth of the ADC) sampled without dither sounds extremely distorted and unpleasant. Without dither the low level may cause the least significant bit to "stick" at 0 or 1. With dithering, the true level of the audio may be calculated by averaging the actual quantized sample with a series of other samples [the dither] that are recorded over time.

A virtually identical process, also called dither or dithering, is often used when quantizing photographic images to a fewer number of bits per pixel—the image becomes noisier but to the eye looks far more realistic than the quantized image, which otherwise becomes banded. This analogous process may help to visualize the effect of dither on an analogue audio signal that is converted to digital.

Dithering is also used in integrating systems such as electricity meters. Since the values are added together, the dithering produces results that are more exact than the LSB of the analog-to-digital converter.

Note that dither can only increase the resolution of a sampler, it cannot improve the linearity, and thus accuracy does not necessarily improve.

Oversampling

Usually, signals are sampled at the minimum rate required, for economy, with the result that the quantization noise introduced is white noise spread over the whole pass band of the converter. If a signal is sampled at a rate much higher than the Nyquist frequency and then digitally filtered to limit it to the signal bandwidth there are the following advantages:

Relative speed and precision

The speed of an ADC varies by type. The Wilkinson ADC is limited by the clock rate which is processable by current digital circuits. Currently, frequencies up to 300 MHz are possible. The conversion time is directly proportional to the number of channels. For a successive-approximation ADC, the conversion time scales with the logarithm of the number of channels. Thus for a large number of channels, it is possible that the successive-approximation ADC is faster than the Wilkinson. However, the time consuming steps in the Wilkinson are digital, while those in the successive-approximation are analog. Since analog is inherently slower than digital, as the number of channels increases, the time required also increases. Thus there are competing processes at work. Flash ADCs are certainly the fastest type of the three. The conversion is basically performed in a single parallel step. For an 8-bit unit, conversion takes place in a few tens of nanoseconds.

There is, as expected, somewhat of a tradeoff between speed and precision. Flash ADCs have drifts and uncertainties associated with the comparator levels, which lead to poor uniformity in channel width. Flash ADCs have a resulting poor linearity. For successive-approximation ADCs, poor linearity is also apparent, but less so than for flash ADCs. Here, non-linearity arises from accumulating errors from the subtraction processes. Wilkinson ADCs are the best of the three. These have the best differential non-linearity. The other types require channel smoothing in order to achieve the level of the Wilkinson.[5][6]

The sliding scale principle

The sliding scale or randomizing method can be employed to greatly improve the channel width uniformity and differential linearity of any type of ADC, but especially flash and successive approximation ADCs. Under normal conditions, a pulse of a particular amplitude is always converted to a certain channel number. The problem lies in that channels are not always of uniform width, and the differential linearity decreases proportionally with the divergence from the average width. The sliding scale principle uses an averaging effect to overcome this phenomenon. A random, but known analog voltage is added to the input pulse. It is then converted to digital form, and the equivalent digital version is subtracted, thus restoring it to its original value. The advantage is that the conversion has taken place at a random point. The statistical distribution of the final channel numbers is decided by a weighted average over a region of the range of the ADC. This in turn desensitizes it to the width of any given channel.[7][8]

ADC types

These are the most common ways of implementing an electronic ADC:

There can be other ADCs that use a combination of electronics and other technologies:

Commercial analog-to-digital converters

These are usually integrated circuits.

Most converters sample with 6 to 24 bits of resolution, and produce fewer than 1 megasample per second. Thermal noise generated by passive components such as resistors masks the measurement when higher resolution is desired. For audio applications and in room temperatures, such noise is usually a little less than 1 μV (microvolt) of white noise. If the MSB corresponds to a standard 2 V of output signal, this translates to a noise-limited performance that is less than 20~21 bits, and obviates the need for any dithering. As of February 2002, Mega- and giga-sample per second converters are available. Mega-sample converters are required in digital video cameras, video capture cards, and TV tuner cards to convert full-speed analog video to digital video files. Commercial converters usually have ±0.5 to ±1.5 LSB error in their output.

In many cases, the most expensive part of an integrated circuit is the pins, because they make the package larger, and each pin has to be connected to the integrated circuit's silicon. To save pins, it is common for slow ADCs to send their data one bit at a time over a serial interface to the computer, with the next bit coming out when a clock signal changes state, say from 0 to 5 V. This saves quite a few pins on the ADC package, and in many cases, does not make the overall design any more complex (even microprocessors which use memory-mapped I/O only need a few bits of a port to implement a serial bus to an ADC).

Commercial ADCs often have several inputs that feed the same converter, usually through an analog multiplexer. Different models of ADC may include sample and hold circuits, instrumentation amplifiers or differential inputs, where the quantity measured is the difference between two voltages.

Applications

Music recording

ADCs are integral to current music reproduction technology. Since much music production is done on computers, when an analog recording is used, an ADC is needed to create the PCM data stream that goes onto a compact disc or digital music file.

The current crop of AD converters utilized in music can sample at rates up to 192 kilohertz. High bandwidth headroom allows the use of cheaper or faster anti-aliasing filters of less severe filtering slopes. The proponents of oversampling assert that such shallower anti-aliasing filters produce less deleterious effects on sound quality, exactly because of their gentler slopes. Others prefer entirely filterless AD conversion, arguing that aliasing is less detrimental to sound perception than pre-conversion brickwall filtering. Considerable literature exists on these matters, but commercial considerations often play a significant role. Most high-profile recording studios record in 24-bit/192-176.4 kHz PCM or in DSD formats, and then downsample or decimate the signal for Red-Book CD production (44.1 kHz) or to 48 kHz for commonly used for radio/TV broadcast applications.

Digital signal processing

AD converters are used virtually everywhere where an analog signal has to be processed, stored, or transported in digital form. Fast video ADCs are used, for example, in TV tuner cards. Slow on-chip 8, 10, 12, or 16 bit ADCs are common in microcontrollers. Very fast ADCs are needed in Digital storage oscilloscopes, and are crucial for new applications like software defined radio.

Electrical Symbol

Testing

Testing an Analog to Digital Converter requires an analog input source, hardware to send control signals and capture digital data output. Some ADCs also require an accurate source of reference signal.

The key parameters to test a SAR ADC are following:

  1. DC Offset Error
  2. DC Gain Error
  3. Signal to Noise ration (SNR)
  4. Total Harmonic Distortion (THD)
  5. Integral Non Linearity (INL)
  6. Differential Non Linearity (DNL)
  7. Spurious Free Dynamic Range
  8. Power Dissipation

See also

Notes

  1. ^ Maxim App 800: "Design a Low-Jitter Clock for High-Speed Data Converters"
  2. ^ "Jitter effects on Analog to Digital and Digital to Analog Converters"
  3. ^ abstract: "The effects of aperture jitter and clock jitter in wideband ADCs" by Michael Löhning and Gerhard Fettweis 2007
  4. ^ "Understanding the effect of clock jitter on high-speed ADCs" by Derek Redmayne & Alison Steer 2008
  5. ^ Knoll (1989, p. 664–665)
  6. ^ Nicholson (1974, p. 313–315)
  7. ^ Knoll (1989, p. 665–666)
  8. ^ Nicholson (1974, p. 315–316)
  9. ^ Atmel Application Note AVR400: Low Cost A/D Converter
  10. ^ Knoll (1989, p. 663–664)
  11. ^ Nicholson (1974, p. 309–310)
  12. ^ [www.analog.com/static/imported-files/tutorials/MT-028.pdf Analog Devices MT-028 Tutorial: "Voltage-to-Frequency Converters"] by Walt Kester and James Bryant 2009, apparently adapted from "Data conversion handbook" by Walter Allan Kester 2005, page 274
  13. ^ [ww1.microchip.com/downloads/en/AppNotes/00795a.pdf Microchip AN795 "Voltage to Frequency / Frequency to Voltage Converter"] page 4: "13-bit A/D converter"
  14. ^ "Elements of electronic instrumentation and measurement" by Joseph J. Carr 1996, page 402
  15. ^ "Voltage-to-Frequency Analog-to-Digital Converters"
  16. ^ "Troubleshooting Analog Circuits" by Robert A. Pease 1991, p. 130

References

External links